Nonseparability, Classical and Quantum
نویسنده
چکیده
This paper examines the implications of the holonomy interpretation of classical electromagnetism. As has been argued by Richard Healey and Gordon Belot, classical electromagnetism on this interpretation evinces a form of nonseparability, something that otherwise might have been thought of as confined to non-classical physics. Consideration of the differences between this classical nonseparability and quantum nonseparability shows that the nonseparability exhibited by the classical electromagnetism on the holonomy interpretation is closer to separability than might at first appear.
منابع مشابه
State transfer based on classical nonseparability
We present a state-transfer protocol that is mathematically equivalent to quantum teleportation but uses classical nonseparability instead of quantum entanglement. In our implementation we take advantage of nonseparability among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a beam of light. We demonstrate the transfer of arbitrary OAM states, ...
متن کاملForms of Quantum Nonseparability and Related Philosophical Consequences
Standard quantum mechanics unquestionably violates the separability principle that classical physics (be it point-like analytic, statistical, or field-theoretic) accustomed us to consider as valid. In this paper, quantum nonseparability is viewed as a consequence of the Hilbert-space quantum mechanical formalism, avoiding thus any direct recourse to the ramifications of Kochen-Specker’s argumen...
متن کاملGauge Theories and Holisms
Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum “particles”, it fails in the case of general relativity even though that theory m...
متن کاملNonlocality Is a Nonsequitur
Nonlocality in quantum mechanics does not follow from nonseparability, nor does classical stochastic independence imply physical independence. In this paper an explicit proof of a Bell inequality is recalled, and an analysis of the Aspect experiment in terms of noncontextual, but indefinite weights, or improper probabilities, is given.
متن کاملNegative Entropy and Information in Quantum Mechanics
A framework for a quantum mechanical information theory is introduced that is based entirely on density operators, and gives rise to a unified description of classical correlation and quantum entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional entropies can be negative when considering quantum entangled systems, a fact related to quantum nonseparabi...
متن کامل